반응형
인과추론의 데이터과학. (2021, Nov 11). [Session 15-1] 인과적 의사결정 (Causal Decision Making) [Video]. YouTube.
인과추론의 데이터과학. (2021, Nov 11). [Session 15-2] 처방적 분석 (Prescriptive Analytics) [Video]. YouTube.
인과추론의 데이터과학. (2021, Nov 11). [Session 15-3] 처방적 분석 연구사례 [Video]. YouTube.
Session 15-1
Causal inference and Decision Making
- Causal inference for decision making
- how causal knowledge affects decision
- Decision making for causal inference
- treatment assignment
- between group → research design (control, treatment)
- within group → prescription
- treatment assignment
Causal knowledge affects decision
- Causal model theory of choice
- causal diagram을 의사결정 도구에 적용한 연구
- do operator의 intervention을 사람들의 choice로 바라봄
- 그에 따른 feedback으로 bayesian network(causal belief)를 update
- Causal knowledge might conflict with existing knowledge
- causal knowledge가 사람들의 경험과 지식과 상충되는 것을 보여준 실험
- 당뇨병에 지식이 있는 사람들은 지식에 대한 정합성이나 확신이 줄어드는 경향이 있음
- causal format, structure, domain에 따라 정보가 달랐음
- Causal inference also matters for business decision making
- 데이터 과학이 기업의 의사결정에 영향을 미치는 부분은 제한적임 (prediction)
- experiment(A/B test), regression, time-series(TS)로 인과추론을 가장 많이 하고 있음
Importance of Mechanisms Behind Causal Relationships
- Inform better intervention designs
- ex. 괴혈병 치료제 → 레몬 (X), Vitamin C (O)
- Facilitate better causal reasoning and decision making
- DAG, Causal Bayesian Network → 메커니즘, Causal path에 대한 직관적인 정보를 제공
Session 15-2
Goal-Oriented Framework
Prescriptive Analytics?
- 처방적 분석
- Prescription: 목적 달성을 위한 최적의 input과 output을 design 하는 것
- Input → Intervention-oriented research : Causal Inference
- Output → Solution-oriented research: Prediction
- Framework
- Resources are often limited and constrained in reality
- 특정 constraint하에 최적의 해를 구해야 함 ⇒ Optimization
- Prescriptive Analytics
- Causal inference + Optimization
- Prediction + Optimization
- Y를 1차식(monotonical)으로 가정하면, 인과추론과 예측 문제는 독립적으로 볼 수 있음
Procedure of Prescriptive Analytics
- Prediction + Optimization (PO)
- Step 1: Predict Outcome
- Step 2: Optimize the object using individual predicted outcomes under constraints
- Causal inference + Optimization → Counterfactual
- Step 1: Estimate ATE
- Step 2: Estimate heterogeneous treatment effects (Conditional ATE; CATE)
- Step 3: Optimize the object using individual heterogeneous treatment effects under constraints
Session 15-3
Optimization Problems are Context-Specific
- Amazon: inventory, delivery cost
- Netflix: contents license cost
- business model에 따른 formulation이 중요함
Prediction + Optimization
1) Route Scheduling
- predict then optimize
- predict → likelihood of order delivery success
- delivery priority → optimize delivery route scheduling
2) Human Resources
- predict: probability of successful recruitment (ex. performance, etc..) per employee and job
- optimize: recruitment and position allocation (considering multi-level constraint)
3) Therapeutic Regimen
- Regimen: 두 가지 이상의 항암제를 병합한 치료 요법
- predict: clinical trial efficacy (overall survival rate), toxicity outcomes of therapies
- optimize: Chemotherapy regimens to maximize predicted efficacy
- Chemotherapy: drug treatment that uses powerful chemicals to kill fast-growing cells in your body
- Constraint
- under the rage of acceptable predicted toxicity
- based on the survival and toxicity models
4) Outpatient Appointment System
- predict: no-shows patient
- optimize: smart scheduling
5) Online advertising Bidding
- predict-optimize-perform-update
- predict: CTR and market value
- optimize: bid strategy
- based on the estimated CTR and cost
- consideration including the campaign budget and the auction volume, etc
Advanced topics
- SPO framework → prediction에서 오차를 측정할 때, optimization problem도 같이 고려하는 것
- Incorporating uncertainty and auxiliary infromation into optimization
- Kernelized empirical risk minimization
- Taking prediction and causal inference together into account
- What if the payoff function is not linear in the outcome (e.g., quadratic function)?
- Independent → additive
- Systematically related → multiplicative
- What if the payoff function is not linear in the outcome (e.g., quadratic function)?
Causal Inference + Optimization
- Estimate heterogenous treatment effects, then optimize
- no CATE without ATE estimation
Optimize Heterogenous Treatment Effects
- aims to optimize the objective (e.g., profit, retention) based on individual treatment effects
- cost curves can be used to present the effectiveness of optimal treatment
1) Marketing Campaign
2) Social Effectiveness
- 가상으로 만든 문제 예시
3) NPO Donation
- NPO: Non-Profit Organization
반응형
'Mathematics > Causal inference' 카테고리의 다른 글
[KSSCI 2021] 인과추론의 데이터 과학 - Session 12 (1) | 2023.10.11 |
---|---|
[KSSCI 2021] 인과추론의 데이터 과학 - Session 16 (0) | 2023.10.11 |
[KSSCI 2021] 인과추론의 데이터 과학 - Session 14 (0) | 2023.09.27 |
[KSSCI 2021] 인과추론의 데이터 과학 - Session 13 (0) | 2023.09.27 |
[KSSCI 2021] 인과추론의 데이터 과학 - Session 11 (0) | 2023.09.05 |
댓글